Managing Calves: The Five “C’s” and More...

Sheila M. McGuirk, DVM, PhD
School of Veterinary Medicine
University of WI

The Future is Here
- Intensive
- Challenging
- Expensive
- Opportunity
 - Grow from within
 - Make genetic process
 - Improve productivity
 - Minimize biosecurity risks

Calf Costs Are High
(From WI 2007 Study)
- Labor and management (47%)
 - Efficiencies with custom operations
- Feed cost (34%)
 - Ave weaning age
 - Number of days on feed
 - Source of liquid feed
- Variable cost
 - $5.31/day ($3.16-5.78)
 - After weaning $2.04/day ($1.31-2.93)
Health problems haven't changed much.

Reduce costs by lowering weaning age

Opportunity: Reduce deaths that occur within 48 hours of birth.
(8.1% of calves born in 2006)

- 78.6% born dead
- 21.4% born alive, die within 48-hr
Reducing Losses in First 48-hours

• Transition cow management
• Supervision prior to and during calving
• Vaginal delivery is important for survival
• Proper procedures for assisting delivery
 - Timing
 - Methods
 http://www.cvmbs.colostate.edu/ilm/proinfo/calving/notes/whentocallophelp.htm
• Resuscitation protocols
• Calling before it’s too late

Calving Assistance is Bad!

• Reduced calf survival
• Calf injury
• Increased odds for calf disease
• Lower milk production in first 60-days

Assist when needed, not to speed up delivery.

Moderate Calving Assistance

• Thoracic and abdominal bleeding
• Fractured ribs
• Torn diaphragm
• Ruptured liver
• Swollen head and tongue
• Yellow staining
• Aspiration of amniotic fluid
• Delayed brain development
• FPT
• Increased disease
• Death
Lower Dystocia Risks

- Monitor body condition scores
- Monitor dry matter intake
- Optimize sire selection
- Age at first calving
- Dry period length
- Stall comfort and bunk space
- Reduce stress
- Herd testing for NEFA’s

Know Normal Calf Behavior

- Head righting in minutes
- Sitting in 5 minutes
- Attempts to stand within 15 minutes
- Standing within 1 hour
- Temp high at birth, declines to 101-102 by 1 hour
- Suckling within 2 hours

Mark High Risk Calves

- Complete exam
- Regular health screening
 - Prolonged time standing after feeding
 - Appetite change
 - Temperature change more than 1.5°F
 - Calf health scoring system
 - Navel exam

Anti-inflammatory drugs
- Antibiotics
- Oral fluids
Time, training and a process for regular health screening

Healthy Calves

The Basic Care Package For Calves

- Colostrum
- Calories
- Consistency
- Cleanliness
- Comfort
The immune status of the cow impacts calf health.

- Vaccination or disease exposure
- Colostrum production - 15 days pre-fresh
- Genetic and hormonal influences on variation in production and transfer of antibodies

Colostrum quality and quantity
- Antibodies
- Maternal immune cells
- Nutritional, growth and development factors

Colostrum Composition

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat (%)</td>
<td>6.7</td>
<td>2.0</td>
<td>26.5</td>
</tr>
<tr>
<td>Protein</td>
<td>14.9</td>
<td>7.1</td>
<td>22.6</td>
</tr>
<tr>
<td>Lactose</td>
<td>2.5</td>
<td>1.2</td>
<td>5.2</td>
</tr>
<tr>
<td>Total Solids</td>
<td>27.6</td>
<td>18.3</td>
<td>43.3</td>
</tr>
<tr>
<td>IgG (mg/ml)</td>
<td>41.0</td>
<td>14.5</td>
<td>94.8</td>
</tr>
</tbody>
</table>

- Milk early
- Don't discard heifers

PA survey by Heinrichs, et. al.

It’s not just the antibodies

- Immunoglobulins - antibodies
- Growth factors
 - Immune regulation
 - Development of the intestinal tract
 - Mammary development
- Maternal cells in colostrum
 selectively absorbed and functional
Proper Use of Esophageal Feeder

- Calf standing or sitting
- Nose below the ears
- Gentle and slow
- 4-qt container for colostrum

Colostrum Equipment

- 3 qt
- 1 gallon

Colostrometer Use

- Calves need 150-200 gm IgG
- Poor quality is poor quality
- > 1.070 to insure 50 gm/L
- Warm underestimates IgG
Contaminated Colostrum

- Udder preparation
- Clean milking and feeding equipment
- Proper chilling and storage
If there isn’t enough colostrum, there must be a back up plan

150-200 gm of IgG

You don’t know until you test!

Herd Testing Protocol
- Measure serum protein concentration in 10-12 calves
 - < 7 days
 - > 18 hours from feeding
- Separate non-hemolysed serum
- Serum at room temperature (65-75 F)

• Goal:
 - 90% are above 5.2 g/dl
 - 80% are above 5.5 g/dl

Colostrum Summary
- Calves need 150-200 gm of IgG
- Colostrum should test at 50 gm IgG/L
- Fresh colostrum is best for all the nutritional and
- IgG status of calves is most important variable in predicting health, growth and feed efficiency

- If the esophageal feeder is used, give
 - 4 qt
 - 3 qt may be ok if calf sucks all of it
 - Bacteria in colostrum inhibit absorption of

- Herd Testing Protocol
- Colostrum Summary
- IgG status of calves is most important variable in predicting health, growth and feed efficiency
Improvements Still Needed

- Accurate, affordable field tool to measure IgG concentration in colostrum
 - Animal variation
 - Colostrum milking time
 - Water dilution effects
- Better equipment for colostrum delivery
 - 4 qt esophageal feeders (single passage)
 - 3 qt bottles for suckling colostrum
- Preservation of colostrum quality without loss of the nutritional, developmental and immune factors
- Effective colostrum replacement
 - IgG delivery
 - Packaging, cost, volume fed
 - Other immune, nutritional and developmental components

The Basic Care Package For Calves

- Colostrum
- Calories
- Consistency
- Cleanliness
- Comfort

A Basic Care Package

- Colostrum
- Nutrition
Feeding Calves Has Changed

Growth Objectives

- Double birth weight by 56 days
 - 90 lb calf is 180 lb by 56 days
 - Equals 1.6 lb per day average!
- Decrease liquid feed days 49-56 by 50%
- No liquid feed after 56 days
- 6-10 days to recover starter intake
- Forages fed at 5 lb starter intake
- TMR before 5 months must be done with care
- Feed 1.8 to 2.5 lb of milk solids/day

With more milk consumed, calves have fewer health problems

Comparing Liquid Feeds

<table>
<thead>
<tr>
<th></th>
<th>Protein</th>
<th>Fat</th>
<th>Total Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole milk</td>
<td>27%</td>
<td>30%</td>
<td>12.7% (1.1 lb/gal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.285 lb prot/gal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.317 lb fat/gal)</td>
</tr>
<tr>
<td>Milk replacer</td>
<td>20%</td>
<td>20%</td>
<td>11.4% (1 lb/gal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.190 lb prot/gal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.190 lb fat/gal)</td>
</tr>
<tr>
<td>Milk replacer</td>
<td>28%</td>
<td>20%</td>
<td>15% (1.25 lb/gal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.333 lb prot/gal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.238 lb fat/gal)</td>
</tr>
</tbody>
</table>
Traditional Calf Feeding
80 lb Calf

Minimum Mixing/Feeding
- Fed at 8% body weight
- Mixed at 10% solids
- 0.64 lb mr solids/day

Maximum Mixing/Feeding
- Fed at 12% body weight
- Mixed at 12.5% solids
- 1.2 lb mr solids/day

87.5% increase in daily solids from minimum to maximum

Dairy Calves Eating
< 0.5 lb Starter are the Problem

1-wk, 86 lb calf, 4 qt whole milk/day, 0.1 lb starter

<table>
<thead>
<tr>
<th></th>
<th>65 F</th>
<th>32 F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>0.98</td>
<td>0.35</td>
</tr>
<tr>
<td>Protein</td>
<td>0.98</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Winter feeding: 6 qt per day by day 3
8 qt per day by 2 weeks

Dairy Calves Eating
< 0.5 lb Starter are the Problem

1-wk, 95 lb calf, 20:20 all milk mr
Goal: 0.8-1 lb/day gain

<table>
<thead>
<tr>
<th></th>
<th>60 F</th>
<th>32 F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powder</td>
<td>24 oz</td>
<td>28 oz</td>
</tr>
<tr>
<td>Water</td>
<td>6 qt</td>
<td>7 qt</td>
</tr>
</tbody>
</table>
Cold Weather Feeding

- Add another meal of the same mix 2 extra meals if 0°F
- Increase total solids 15-18% (requires adjustment of 1% per day)
- Add additional fat
- Calves still need water and deep straw bedding
- Always have fresh, clean starter in front of the calf to encourage intake

Feeding Consistency

- Total solids
- Osmolality
- Sodium
- Temperature
- Measuring, mixing and delivery

Total Solids

- 1< 1% change per day
- Never > 18%

Watch the Total Solids Variation

Calculate

- 10 oz powder = 0.625 lb
- 2 qt water = 4.17 lb

\[
0.625 + 4.17 = 13\% \text{ solids}
\]

Measure
Variability in MR Diet – Total Solids

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.2</td>
<td>15.6</td>
</tr>
<tr>
<td>2</td>
<td>11.5</td>
<td>17.0</td>
</tr>
<tr>
<td>3</td>
<td>12.5</td>
<td>19.3</td>
</tr>
<tr>
<td>4</td>
<td>8.8</td>
<td>16.0</td>
</tr>
<tr>
<td>5</td>
<td>10.9</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Koepnick and McGuirk, 2010

MR Winter Feeding – Percent Solids Increased

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calf 1</td>
<td>16</td>
<td>19</td>
<td>21</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Calf 2</td>
<td>17</td>
<td>17</td>
<td>19</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Calf 3</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>22</td>
<td>17</td>
</tr>
</tbody>
</table>

- No more than 1% per day
- Never over 18%

Inconsistencies Invite Problems

- Additives
- Medications
- Infection
- Carbohydrates and Protein Substrate
- Abnormal mobility
- Proliferation
- Sporulation
- Toxins
Other Nutrition Issues

- Salt poisoning
- Added ingredients may affect abomasal emptying, intestinal transport or intestinal flora
- Bovatec (Lasalocid) > 2X
- Electrolyte powder in milk or mr
- Limited water in cold weather

The Basic Care Package For Calves

- Colostrum
- Calories
- Consistency
- Cleanliness
- Comfort

A Basic Care Package

- Colostrum
- Nutrition
- Environment
Cleanliness Reduces Exposure

- Maternity pen
- Cows in maternity pen
- Transport cart
- People moving and handling calves
- Warming, holding or drying area
- Calf housing
- Feeding equipment
- Feeds

Time and Management Between Occupants

15% more pens than calves at maximum occupancy

During Occupancy: Remove feed refusals
Find the Site of Exposure...

- By-pass
- Dilute
- Distance them from it.
Calf Warming Rooms

Bedding Contamination Can Be Measured

<table>
<thead>
<tr>
<th>Location</th>
<th>Coliforms</th>
<th>Salmonella</th>
<th>Total cfu/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternity</td>
<td>1,000</td>
<td>Negative</td>
<td>576,000</td>
</tr>
<tr>
<td>Holding pen</td>
<td>500</td>
<td>Negative</td>
<td>150,825</td>
</tr>
<tr>
<td>Truck</td>
<td>6,900,000</td>
<td>Positive</td>
<td>6,921,750</td>
</tr>
<tr>
<td>Clean hutch</td>
<td>750</td>
<td>Negative</td>
<td>11,500</td>
</tr>
<tr>
<td>5-day hut</td>
<td></td>
<td></td>
<td>7,500</td>
</tr>
<tr>
<td>Repeat test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goals:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacterial types</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonella culture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupied pen</td>
<td>< 500,000</td>
<td>Negative</td>
<td>< 2,000,000</td>
</tr>
</tbody>
</table>

Housing Factors

- Seasonal challenges
- Individual or group pens
- Indoor or outdoor
- Pen design, size, number
- Bedding type
- Filling and emptying patterns
Comfort

- Straw for newborns
 - Critical temperature range is 55-75 F
 - Use less energy to stay warm and have more to grow and fight disease
- Deep, dry bedding, deep enough to cover the legs when calf is lying down

Deep Bedding

Distances calves from exposure Reduces prevalence of respiratory disease and scours

Comfort

Blankets help.
Comfort

Calves should be sleeping 75% of the day.

Housing Changes that Reduce Respiratory Disease

- Decrease calf to calf contact
 - Barriers between calves
- Increase nesting score
- Decrease aerosol bacteria
 - Increase pen size > 24 sq ft
 - Limit barriers surrounding the calf
 - Colder temperatures
 - Supplemental outside air

The deeper the straw, the less respiratory disease

- Calories not diverted to warming but used to fight infection
Solid Panel Between Calves
But Not Boxed In

Remove feed refusals from
calf housing area

Calf Housing Solutions
- Naturally ventilated barns in winter (Lago, 2006)
 - Solid panels between calves
 - Increased bedding depth
 - Low airborne bacterial counts
- Group pen housing
 - Small, stable groups
 - Preconditioned period
 - At least 28 sq ft / calf
 - Increased milk allowance or ad-lib feeding
 - All in-all out management
Group Housing

Resting Space Feeding Space and Water

Space Requirement: Bedded Pack with Feeding Area

<table>
<thead>
<tr>
<th>Weight (lb)</th>
<th>135</th>
<th>220</th>
<th>330</th>
<th>440</th>
<th>660</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area/heifer (sq ft)</td>
<td>21</td>
<td>25</td>
<td>29</td>
<td>37</td>
<td>45</td>
</tr>
<tr>
<td>Bedded area/heifer (sq ft)</td>
<td>17</td>
<td>21</td>
<td>24</td>
<td>29</td>
<td>35</td>
</tr>
</tbody>
</table>

Other Topics

- Vaccinations
- Dehorning
- Screening for health problems
- Treatment protocols
Goals of a Calf Vaccination Program

- Protect from disease or agents that they are likely to encounter before they are challenged
 - Septicemia at birth
 - Scours 3-14 days
 - Respiratory disease 3 weeks to 4 months
- Cost efficient (cost vs risk vs protection)
- “At least do no harm!”

Septicemia

- Infection before, during or shortly after delivery
- Gram negative bacteria
- Cows vaccinated - J Vac, J5, Endovac Bovi, Salmonella SRP
- Clean colostrum before exposure

Scours Protection

- Primer and booster in lact 1 and an annual booster in older cows
 - Vaccinate dry cows: ETEC, Rota, corona, Clostridium perfringens C, Salmonella
 - Scour Guard 4KC
 - Guardian
 - Scour Bos
 - Salmonella SRP
 - Vaccinate newborns
 - Calf Guard
 - Provide monoclonal antibodies
 - First Defense - ETEC, coronavirus
 - Ecolizer + C
 - Timing: booster needs to be at least 3 weeks prefresh, meaning that primer has to go at 75 to 60 days pre-fresh
Respiratory Disease Protection

- Colostrum
- Nutrition
- Housing
- Intranasal vaccine to protect calves with maternal antibodies
 - Birth
 - 3 weeks
 - Before group housing

Avoid Calf Vaccination Pitfalls

- Vaccinating sick/stressed calves
- Multiple vaccines at once
- Gram negative bacterial components
 - Pasteurella and Mannheimia
 - Salmonella
- Mycoplasma bovis
- Half-dose vaccinations

Dehorning: Pick the right time and dehorn with pain management
Screening for Health Problems

Detection depends on...
- Plane of nutrition
- Management
- Housing type
- Group size
- Timing of exam
- Type and quality of screening

From Outside of the Calf Pen
- Nasal Discharge
- Eyes
- Ears
- Spontaneous coughing
Determine a Respiratory Score

Calves with total respiratory score > 5 have more than 2 signs of respiratory disease and are treated.
One Time Treatment Protocols
5-Days of Coverage

- Baytril (Enrofloxacin)
- Draxxin (Tulathromycin)
- Excede (Ceftiofur)
- Nuflor Gold (Florfenicol)

Work with your veterinarians

More Than One Dose Protocols
5 Days of Coverage

- Adspec (Spectinomycin)
- Baytril (Enrofloxacin)
- Excenel or Naxcel (Ceftiofur)
- Nuflor Gold (Florfenicol)

Work with your veterinarians

Signs of Detection
Problems
Diarrhea

2 Loose
3 Watery

2 qt of OES solution once daily
2 qt of OES solution twice daily

Diarrhea Treatment

- Feed them
- Oral electrolyte solution
 - Fecal score 2: 2 qt OES once daily
 - Fecal score 3: 2 qt OES twice daily

Sick Calves Get Antibiotics
- High temp (> 103): Low temp (< 100)
- Reduced intake or feed refusal
- Arched back, hair standing up
- More than a streak of blood
- Another body system involved – lungs, navel or joints

Antibiotics
- *Salmonella* suspects or “sick” calves
- 3 days of coverage
- Gram negative spectrum
 - Consult your veterinarian